
'd d i

AFHRL-TP-89-87

AIR FORCE 9,
ADVANCED ON-THE-JOB TRAINING SYSTEM:

_H
SOFTWARE TEST PLAN

'U
M Douglas Aircraft Company

0A A Division of McDonnell Douglas Corporation~2450 South Peoria
.Aurora, Colorado 80014

~N

TRAINING SYSTEMS DIVISION

Brooks Air Force Base, Texas 78235-5601< R
E
S May 1990o Interim Technical Paper for Period August 1985 - Deceer 1989

U
R Approved for public release; distribution is unlimited.

C

E
S LABORATORY

Ii

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601

ms i mm mm N) mmim

NOTICE

When Government drawings, speci cations, or other data are used for any
purpose other than in connect on with a definitely Government-related
procurement, the United States ivernment incurs no responsibility or any
obligation whatsoever. The fact iat the Government may have formulated or in
any way supplied the said drawin(, specifications, or other data, is not to
be regarded by implication, or ot rwise in any manner construed, as licensing
the holder, or any other person c corporation; or as conveying any rights or
permission to manufacture, use, o sell any patented invention that may in any
way be related thereto.

The Public Affairs Office has rev wpd this paper, and it is releasable to the
National Technical Information S rvice, where it will be available to the
general public, including foreign iationals.

This paper has been reviewed and ; approved for publication.

HENDRICK W. RUCK, Technical Advis, '
Training Systems Division

RODGER D. BALLENTINE, Colonel, US,--
Chief, Training Systems Division

This technical paper is printed as received and has not been edited by the
AFHRL Technical Editing staff, he opinions expressed herein represent those
of the author and not necessarily those of the United States Air Force.

REPORT DOCUMENTATION PAGE [07 1 1

AUg r"tn i' o i alco fmiOmd.I a ftq ump I how ow Iow. a" mgU. WWWO tot fo g"nus. ai~

caotomofuasmdnm u~dakqua~laqto ialgd0~bd. to WSAsbqiM e~leIiwnloua o W. IRWIN. Onwagi a"d Aw. 13 is Jeffam

I. AGENCY USE ONLY (Loame bW) L REPORT DATE R. REPORT TYPE AND DATES COVERED
I may 1990 Interim - Au st 1985 to December 1989

4. TIT1E AND SUeTITlE S. FUNOING NUMBERS

Advanced On-the-job Training System: C - F33615-84-C-0059
Software Test Plan PE - 63227F

PR - 2557
6. AUTHOR(S) TA - 00

WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Douglas Aircraft Company
A Division of McDonnell Douglas Corporation

2450 South Peoria
Aurora, Colorado 80014

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORISS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Training Systems Division
Air Force Human Resources Laboratory AFHRL-TP-89-87
Brooks Air Force Base, Texas 78235-5601

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

-13. ABSTRACT (Maximum 200word)

The Software Test Plan for the Advanced On-the-job Training System (AOTS) establishes the plan for
testing the Computer Program Configuration Items (CPCI) in the AOTS Computer Support Subsystem, Software
Component. The Plan describes AOTS Development Phase (Phase II) software testing which was divided into
two phases: formal and informal testing. The levels of testing described in this document equate with
the test types described in the quality assurance provisions paragraphs in the AOTS Development Specifi-
cations for the Management CPCI, Evaluation CPCI, and Support System CPCI.

14. SUBJECT TERMS IS. NUMBER OF PAGES
advanced on-the-job training system 53
computer program cnnfiguration ittps software test plan 16. PRIC:E CODE

17. SEcui CASSWICATION 16. SECURITY CLASSIFCATION 19. SECURITY C .ASSWICATION 20. UMTATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-$550 Standard Form 293 (Rev. 2-89)

AFHRL Technical Paper 89-87 May 1990

ADVANCED ON-THE-JOB TRAINING SYSTEM:
SOFTWARE TEST PLAN

4T

Douglas Aircraft Company
A Division of McDonnell Douglas Corporation

2450 South Peoria
Aurora, Colorado 80014 Accesson For

NTIS GRA&I
DTIC TAB
U:-rncunced

TRAINING SYSTEMS DIVISION JustlificatiorL
Brooks Air Force Base, Texas 78235-5601

AvL.... Codes

I
Reviewed and submitted for publication by

Jack L. Blackhurst, Major, USAF
Chief, Advanced On-the-jcb Training System Program

This publication is primarily a workig paper. It is published solely to document work performed.

SUMMARY

The Advanced On-the-job Training System (AOTS) was an Air Staff directed,
AFHRL developed, prototype system which designed, developed, and tested a
proof-of-concept prototype AOTS within the operational environment of selected
work centers at Bergstrom AFB, Texas, and Ellington ANGB, Texas, from August
1985 through 31 July 1989. The AOTS Software Test Plan was prepared for the
AOTS Software Development Team and establishes the plan for testing the
Computer Program Configuration Items (CPCI) in the AOTS Computer Support
Subsystem, Software Component. The plan describes AOTS Development Phase
(Phase II) software testing which was divided into two phases: formal and
informal testing. The levels of testing described in this document equate
with the test types described in the quality assurance provisions paragraphs
in the AOTS Development Specifications for the Management CPCI, Evaluation
CPCI, and System Support CPCI. Computer Program Test and Evaluation as
described in the Development Specifications is equivalent to unit level and
integration level testing as described in the AOTS Software Test Plan.

i- . . .

PREFACE

This paper was developed by Douglas Aircraft Company, the AOTS development
contractor, under Government Contract Number F33615-C-84-0059. The AFHRL Work
Unit number for the contract was 2557-00-02. The primary office of responsi-
bility for management of the project is the Air Force Human Resources
Laboratory, Training Systems Division, and the Air Force AOTS project manager
is Major Jack Blackhurst.

This document was prepared for the AOTS Software Development Team. It is
not a CDRL item, however, it is referred to by the CPCI Development Specifica-
tions, Software Development Plan, and Master Test Plan. It is intended to be
used both as a standalone document in low level software development testing,
and in conjunction with the Master Test Plan in higher level requirement
verification testing. The procedures described in this document will be
updated as necessary.

This document is based on the provisions set forth in Data Item Descrip-
tion (DID) DI-MCCR-80014. This DID is applicable to DOD-STD-2167, which is
not an AOTS applicable document. Some deviation is taken from this DID in
Sections 3 and 4. In Section 3, the terminology Computer Program Component
(CPC) was substituted for Computer Software Component (CSC). CPC is consis-
tent with the AOTS CPCI Development Specifications written according to the
21 March 1979 version of MIL-STD-483. CSC is terminology adopted at a later
point in time and is used with DOD-STD-2167 documentation. In Section 4,
this document divides formal testing into system and acceptance testing. The
DID does not make this distinction.

DIDs DI-MCCR-80015, Software Test Description, and DI-MCCR-80016,
Software Test Procedure, were not followed structurally in the Formal Test
Procedure model (see Attachment C). The Formal Test Procedure contains the
same information as these two DIDs describe, but in a format that makes
formal test procedures consistent with informal test procedures. The same is
true for DID DI-MCCR-80017, Software Test Report, and the Formal Test Report
model presented in Attachment D.

The identification of AOTS formal test procedures in Section 4 is complete
to the point of the current state of the phased software development effort.
As detailed design proceeds on the next set of software, these tables will be
updated accordingly.

MEM

ACKNOWLEDGEMENTS

Some of the material contained in this docment has beenadapted for use from the following manuals and books:- MDAC-STL Software Engineering Practices Manual- The Software Development Project, Planning & Management
Phillip Bruce and Sam M. Pederson
19S2, Jchn Wiley and Sons, Inc.

- Software System Testing and Quality AssuranceBoris Beizer
1984, Van Nostrand Reinhold Company

- Productive Software Test Management
Michael W. Evans
1984, John Wiley and Sons, Inc.

AOTS.STP
VI.0/Feb.87

iii

Table of Contents
Section Page
1. SCOPE 1
1.1 Identification 1
1.2 Purpose 1
1.3 Introduction 1

2. REFERENCED DOCUMENTS 4

3. PLANS FOR INFORMAL TESTING 5
3.1 Unit Test Planning 5
3.1.1 Unit Test Requirements 5
3.1.2 Unit Test Responsibilities 5
3.1.3 Unit Test Schedule 6
3.1.4 Unit Test Procedure Model 6
3.1.5 Unit Test Report Model 7
3.2 CPC Integration and Test Planning 8
3.2.1 CPC Integration and Test Requirements 9
3.2.2 CPC Integration and Test Responsibilities 9
3.2.3 CPC Integration Test Classes 10
3.2.4 CPC Integration and Test Schedules 10
3.2.5 Integration and Test Procedure Model 10
3.2.6 Integration and Test Report Model 12
3.3 Resources Required for Informal Testing 13
3.3.1 Facilities 13
3.3.2 Personnel 13
3.3.3 Hardware 13
3.3.4 Interfacing/Support Software 14
3.3.5 Source 14
3.3.6 Test Configuration 14

4. PLANS FOR FORMAL TESTING 16
4.1 System Test Planning 16
4.1.1 System Test Requirements 16
4.1.2 System Test Responsibilities 16
4.1.3 System Test Schedule 17
4.1.4 System Test Procedure Model 17
4.1.5 System Test Report Model 18
4.2 Acceptance Test Planning 19
4.2.1 Acceptance Test Requirements 19
4.2.2 Acceptance Test Responsibilities 19
4.2.3 Acceptance Test Schedule 20
4.2.4 Acceptance Test Procedure Model 20
4.2.5 Acceptance Test Report Model 20

AOTS.STP Vl. 0/Feb.87

iv

Table of Contents
Section Page

4.3 Formal Test Classes 21
4.4 Formal Tests 21
4.4.1 Management CPCI Test Procedures 21
4.4.2 Evaluation CPCI Test Procedures 23
4.4.3 System Support CPCI Test Procedures 24
4.5 Formal Test Levels 26
4.6 Formal Test Summary 26
4.7 Formal Test Schedule(s) 26
4.8 Data Recording, Reduction, Analysis 26
4.9 Formal Test Reports 26
4.10 Resources Required for Formal Testing 26
4.10.1 Facilities 26
4.10.2 Personnel 26
4.10.3 Hardware 27
4.10.4 Interfacing/Support Software 27
4.10.5 Source 27

5. TEST PLANNING ASSUMPTIONS AND CONSTRAINTS 28

6. NOTES .. 28

FIGURES
Figure
1. AOTS Software Test Plan 2
2. Hardware Configuration for Informal Testing .. 15

TABLES
Table
1. Management CPCI Test Procedures 22
2. Evaluation CPCI Test Procedures 23
3. System Support CPCI Test Procedures 25

ATTACHMENTS
Attachment
A. Unit and Integration Test Procedure Model A-1
B. Unit and Integration Test Report Model B-1
C. System and Acceptance Test Procedure Model C-1
D. System and Acceptance Test Report Model D-1
E. Acceptance Test Log E-1
F. System Test Procedure Example F-1
G. Acceptance Test Procedure Example G-1

AOTS.STP Vl.0/Feb.87

V I iI I

1. SCOPE

1.1 Identification. This Software Test Plan establishes the
plan for testing the Computer Program Configuration Items (CPCIs)
in the Advanced On-the-job Training System (AOTS) Computer
Support Subsystem, Software Component. The CPCIs are identified
as the Management CPCI as described in the development
specification numbered 70S647411; the Evaluation CPCI, 70S647413;
and the System Support CPCI, 70S647414.

1.2 Purpose. The purpose of the AOTS is to test a design
concept that will apply automated support to increase the
efficiency and effectiveness of the current Air Force On-the-Job
Training (OJT) system. The Management CPCI will provide software
support for the AOTS Management Subsystem, 70S647100. It will
provide software to support the functions of identifying and
managing training requirements for an Air Force Speciality (AFS);
managing the airmen undergoing training in the AFS; and managing
the resources required to train those airmen.

The Evaluation CPCI will provide software support for the
AOTS Evaluation Subsystem, 70S647300. It will provide software
to support the functions of developing and maintaining evaluation
instrumentation, evaluating performance of tasks by airmen,
performing training quality control functions, and evaluating the
effectiveness of the AOTS as a system.

The System Support CPCI will be composed of the services
required by the other CPCIs to interface with the Hardware
Component, 70S647401. This CPCI will perform operating system
functions, terminal communication and data base input/output, and
will provide security functions to control access to the system.

1.3 Introduction. This plan describes AOTS Phase II software
testing. Software testing is divided into two phases: informal
and formal testing. Both of the testing phases are divided into
two levels. Unit and integration level testing are done in the
informal phase. System and acceptance level testing are done in
the formal phase. Together, these four levels satisfy the Phase
II testing requirements for the Software Component. Figure 1
depicts software testing phases and their levels. The following
paragraphs detail each test phase accompanied by the two levels
of testing within the phase.

It is appropriate to equate the levels of testing described
in this document with the test types described in the quality
assurance provisions paragraphs in the Development Specifications
for the Management CPCI, Evaluation CPCI, and System Support
CPCI. Computer Program Test and Evaluation as described in the
Development Specifications is equivalent to unit level and
integration level testing as described in this document.

AOTS.STP 1 Vl.0/Feb.87

w

C 0

zo0

w zU
0 l< LU
z a

0
ia--
LU LU

> z
oj LLj < LU<

m 0 ~LU C

LU LU Cw Clw

0 ~ 0 Wc

z
0 0

-z > I- l

0 1-

0-0

1I- 0 0

LL CC

ZO > a.
LU

0 ~0

LU I.-
> LL 0

w c
co a.

2

Preliminary Qualification Tests as described in the Development
Specifications is equivalent to system level testing as described
in this document. Formal Qualification Tests as described in the
Development Specifications is equivalent to acceptance level
testing as described in this document.

AOTS.STP 3 Vl.O/Feb.87

2. REFERENCED DOCUMENTS. The following government documents
are referenced in this plan. These documents were written by
MDAC as part of system design and development under the AOTS
contract.

70S647100 Prime Item Development Specification for the
Management Subsystem of the AOTS

70S647300 Prime Item Development Specification for the
Evaluation Subsystem of the AOTS

70S647401 Critical Item Development Specification for the
Hardware Component of the AOTS

70S647411 AOTS Management CPCI Development Specification
70S647413 AOTS Evaluation CPCI Development Specification
70S647414 AOTS System Support CPCI Development Specification

AOTS Software Development Plan
AOTS Configuration Management Plan
AOTS Master Test Plan

AOTS.STP 4 V1.0/Feb.87

3. PLANS FOR INFORMAL TESTING. The informal phase of testing
consists of unit level testing and integration level testing. It
is informal because the testing takes place as the code is being
developed and is planned and performed by the people doing that
development. The expected result of informal testing is a
verified program.

3.1 Unit Test Planning. The intent of unit testing is to
verify that a program unit performs as specified in the
respective CPCI Product Specification. For the purposes of AOTS
software development, unit is defined as an Ada package.

3.1.1 Unit Test Requirements. Unit testing consists of two
phases. The first phase consists of compiling the unit and
correcting compilation errors. The second phase consists of
testing the unit for adherance to the following general
requirements:

a. Conformation to specifications and requirements will be
verified;
- Check that the unit is necessary
- Check function, logic, and computations
- Check adherance to standards - justify exceptions

b. Execution paths will be verified;
- Execute every instruction at least once
- Every decision should be executed at least once in each
possible direction

c. Data handling capability will be verified;
- Check type and format of input data
- Check input data at nominal, extreme, erroneous, and

exceptional values
- Check value, type, and format of output data

d. Design extremes will be verified.
- Check error detection and recovery

This second phase is accomplished by desk checking the unit
and actual execution of the unit. The testing continues until
all known errors have been eliminated and coded unit logic
matches the design. Interfaces may be checked by using stubs to
simulate other units.

3.1.2 Unit Test Responsibilities. The unit test is planned,
performed, end controlled by the programmer responsible for the
unit. Planning includes what the programmer intends to
accomplish for a test, the inputs that are required, the outputs
that are expected, and how the test is to be conducted.
Paragraph 3.1.4 provides a model for putting this data together
in to a unit test procedure. The programmer prepares a
procedure, according to this model, that contains the tests to be
conducted for each unit. This procedure should be reviewed at
the unit code walkthru. The procedure is maintained in the Unit

AOTS.STP 5 Vl.0/Feb.87

Development Folder (UDF). Much of the testing at this level is
very detailed and will not be conducted again in higher level
tests. Thus, the record of informal testing and the
corresponding test results will be kept in the UDF and preserved
for reference purposes. A model test report is provided in
paragraph 3.1.5 to assist in this.

Unit testing can uncover coding deficiencies. The
programmer responsible for the unit is expected to correct the
deficiencies and perform the unit test again.

Unit testing can also uncover design deficiencies. The
programmer responsible for the unit should report the possibility
of any such conditions to the CPCI team leader and, in turn, to
the software manager. Together, they will determine the effect
on the unit and released documentation. Correction of the
deficiencies of this nature must be handled in accordance with
the Configuration Management Plan.

During unit testing, the primary goal is to test the
functions of the unit. Thus, stubs are used to simulate other
units which the unit in test is targeted to interface with, but
which are still under development. Data that the unit in test
provides to another unit must be checked for accuracy. However,
data provided by another unit to the unit in test could be
simulated.

3.1.3 Unit Test Schedule. Initial unit testing takes place
during the software development period for a unit. Thus the unit
test schedule follows the software development schedule for a
program. The general program development schedule is specified
in the AOTS Software Development Plan. The detailed unit test
schedules are kept with the test procedures in the UDFs.

3.1.4 Unit Test Procedure Model. Attachment A provides a
model test procedure. This is to be used as a guide for the
individual creating specific AOTS software unit test procedures.
The following paragraphs describe the elements of the procedure
and include instructions to be used by the author in making up
the procedure.

Section I identifies the unit and the author of a test
procedure. Both of these items, as well as the preparation date
of the procedure, should be filled in. The test type should be
identified as "unit". As the document is revised, the revision
information, including author and date, should be filled in.

Section II is scheduling information for the performance of
the unit test during development. Enter the date that the test
is projected to start and the date it is expected to complete, as
well as an estimate of the length of time to perform the
procedure. These entries can be used for planning and scheduling
purposes for this unit. The development hours entry is a record
of how long this test procedure took to develop and is intended

AOTS.STP 6 Vl.O/Feb.87.

to be used for future planning and schedule purposes.
Section III specifies the plan for resources necessary for

conducting the unit test. Identify the source of the unit to be
tested. Identify data base files, if any, that are necessary to
test this unit. Indicate whether the files are new to this unit
or if existing files and data can be used. Identify other units,
if any, that are necessary to test this unit. Besides serving as
a planning tool this provides a low level critical path, i.e.,
the actual versions of unit x and unit y have to be completed for
you to test unit z. Identify hardware requirements for the test.
If the normal AOTS hardware environment is to be used, then
indicate this. If the unit requires hardware that has not been
used in the AOTS test environment before, e.g. mark sense reader
or X/Y input device, then list this equipment.

Section IV identifies debug information, should that be
appropriate. Does the unit have special debugging code? If so,
how is that feature activated?

Section V describes the specific functional testing to be
performed on the unit. Identify the elements of the unit that
are tested by this procedure. Identify the functions of the unit
that are tested by this procedure. Identify execution paths in
the unit that are not tested by this procedure. This may include
fatal error conditions, nonexistant production data base files,
permanent i/o errors, etc. Elaborate on the actual sequence for
the test procedure: what inputs are necessary, what outputs are
expected from that input, and what function does this
input/output sequence check out (this is indicated with an
ordinal cross reference to the above function list). If specific
input from a file is necessary for the test, indicate what this
data is. Similarly, record what the condition of particular
files are as a result of this test. List what error handling is
to be verified in this unit. If the unit uses data produced by
another unit or produces data to be used by another unit, then
this information should be recorded under "data compatibility".
The heading "other testing" is to used to describe testing that
you feel should be performed but does not fall into one of the
other classes. When writing the test procedure, be familiar with
the contents of the Test Report and the Testing Check List,
described in the following paragraph, so that minimum and maximum
data ranges, as well as typical values and similar constraints
can be tested. Remember to author the test plan in such a manner
that other people, besides yourself, can perform the test. Be
clear, complete, yet concise.

3.1.5 Unit Test Report Model. Attachment B is a model test
report. It is to be used as a guide to report on the execution
of unit tests and should be filled out by the individual
performing the vtest during the process of, or immediately after,
a unit test. The Test Report should be used as an aid in all

AOTS.STP 7 Vl.O/Feb.87

unit testing, with the completed test reports placed in the UDF.
When unit testing is performed at several levels, i.e. testing
each subprogram, or group of subprograms, followed by testing at
the package level, the test reporting should follow that same
plan. The following paragraphs describe the elements of the
report.

Section I identifies the unit tested, the person that
performed the test, and the date of the test. The same report
form is used to document results for a unit level test and for an
integration level test. Therefore mark the test level as
appropriate. Fill in the environment that the unit was executed
in. The time duration of the test can be used for future
planning purposes in unit testing and should be entered as hours
or minutes.

Section II is the reason the test was performed. Is
the test being performed on a newly developed unit, is a unit
being enhanced, or is the unit being tested because other units
that it references were changed? Unit test reports are necessary
not only for new units but also for maturing units.

Section III is an indication of the test results. Was the
outcome expected or unexpected? If the outcome was not as
expected, then a description of the problem or the action to be
performed should be furnished, either in this section or in the
following checklist. This area can also be used for notes or
reminders if the test was successful.

Section IV is a worksheet to be used in conjunction with the
test sequence section of the test procedure. It is to be used to
note problems or to act as a placeholder while executing the test
sequence.

Section V is a checklist for unit testing. It is to be used
as a guide, as well as a reminder of what to test and what to
look for while testing. The headings in the checklist represent
the major software performance and requirement classifications to
be checked in unit testing. Beneath each heading is a list of
items to exercise or check. As items are tested, they are marked
off or notes made for problem reminders.

3.2 CPC Integration and Test Planning. Computer Program
Component (CPC) Integration consists of building a program by
iteratively adding units, and, as the units are integrated,
testing to ensure the resulting software matches that described
in the Development and Product Specifications.

At each iteration, integration subelements are combined to
form integration elements. This process begins with two or more
functionally and logically related units which have passed unit
testing. These units are integrated and the resultant
integration element tested. Once fully tested, such elements
become the subelements which are integrated to form larger
elements. Thus, an integration subelement may be either a fully

AOTS.STP 8 Vl.O/Feb.87

tested unit or a fully integrated set of units and an integration
element is a set of functionally and logically related
subelements.

Ultimately, aggregates of integration elements form CPCs.
For the purposes of AOTS software development, the terminology
CPC and program are used interchangeably.

3.2.1 CPC Integration and Test Requirements. Many of the
requirements for integration testing are the same as for unit
testing. Other requirements are imposed to ensure that
subelements are compatible and consistent.

Like unit testing, integration testing consists of two
phases. The first phase consists of compiling, linking, and
loading the integration element and correcting any resulting
errors. The second phase consists of testing the unit for
adherance to the following general requirements:

a. Confirmation to specifications and requirements will be
verified;
- Check that the elements are necessary
- Check function, logic, and computations
- Check adherance to standards - justify exceptions

b. Execution paths will be verified;
- Execute every major path through the subelement
- Every subelement should be called at least once by each
possible calling subelement

c. Data handling capability will be verified;
- Check type and format of input data
- Check input data at nominal, extreme, erroneous, and

exceptional values
- Check value, type, and format of output data

d. Design extremes will be verified.
- Check error detection and recovery
- Check data compatibility between subelements

Finally, the testing must verify that the integration is
forming the CPCs as they are described in the specifications. If
the CPCs interface with other CPCs, then these interfaces must
also be validated.

The second phase is accomplished by desk checking the
element and actual execution of the element. The testing
continues until all known errors have been eliminated and
integrated element logic matches the design.

3.2.2 CPC Integration and Test Responsibilities. As in unit
testing, the CPC integration test is planned, performed, and
controlled by the programmer(s) responsible for the CPC.
Planning includes what the programmer intends to accomplish for a
test, the inputs that are required, the outputs that are
expected, and how the test is to be conducted. Paragraph 3.2.5
provides a model for a CPC integration test procedure. The

AOTS.STP 9 Vi.0/Feb.87

programmer prepares a procedure, according to this model, that
contains the tests to be conducted for the CPC. This procedure
should be reviewed at the CPC walkthru. This test procedure is
maintained in the UDF for the unit that is the linkable entity
that results in a program. A record of test performance along
with the corresponding test results should be preserved for
reference purposes in the UDF. A model test report is provided
in paragraph 3.2.6 to assist in this.

CPC integration testing can uncover coding deficiencies.
The programmer(s) responsible for the CPC is expected to correct
the deficiencies and perform the CPC integration test again. If
the testing reveals problems with a unit outside of the CPC that
the CPC is integrating with, then the programmer should report
this to the CPCI Team Leader, and if the unit is outside of the
particular CPCI, to the software manager. Resolution for the
integration deficiency should be made as quickly as schedules
allow so as to not hamper further testing.

CPC integration testing can also uncover design
deficiencies. The programmer responsible for the CPC should
report the possbility of any such conditions to the CPCI team
ler and, in turn, to the software manager. Together, they
will determine the effect on the CPC and released documentation.
Correction of the deficiencies of this nature must be handled in
accordance with the Configuration Management Plan.

Any stubs that were used in unit testing are replaced, in
stages, by actual units until CPC integration testing is
complete. The product of a completed CPC integration test is a
complete CPC.

3.2.3 CPC Integration Test Classes. The test classes for CPC
integration testing, and as appropriate for unit testing, include
functional requirement testing, interface testing, terminal and
device input/output testing, file input/output testing, and error
handling testing. The model test procedure described in
paragraph 3.2.5 and the checklist described in the model test
report in paragraph 3.2.6 reflect these test classes.

3.2.4 CPC Integration and Test Schedules. Integration testing
for a program takes place during the software development cycle
for that program. Thus the integration test schedule follows the
program development schedule. The general program development
schedule is specified in the AOTS Software Development Plan. The
detailed integration test schedules are kept with the test
procedures in the UDFs.

3.2.5 Integration and Test Procedure Model. Attachment A is a
model test procedure. The same model is used for the unit test
procedure and the integration and test procedure, as much of
required information is the same. As in the unit test procedure

AOTS.STP 10 Vl.O/Feb.87

description, this model is to be used as a guide for the
individual preparing specific integration test procedures. The
following paragraphs describe the elements of the procedure and
include instructions to be used by the author in formulating the
procedure.

Section I identifies the CPC to be integrated and the author
of the test procedure. Each of these items, as well as the
preparation date of the procedure, should be completed. The
test type should be identified as "integration". As the document
is revised, the revision information, including author and date,
should be filled in.

Section II is scheduling information for the performance of
the integration and test during development. Enter the date that
the test is projected to start and the date it is expected to
complete, as well as an estimate of the length of time to. perform
the procedure. These entries can be used for planning and
scheduling purposes for this unit. The development hours entry
is a record of how long this test procedure took to develop and
is intended to be used for future planning and schedule purposes.

Section III specifies the plan for resources necessary for
conducting the integration and test. Identify the source of the
unit containing the subelements being integrated. Identify data
base files, if any, that are necessary to test this unit.
Identify people whose expertise or time is required. Identify
other software, such as stubs, drivers, or test data generators,
necessary to test this element. Identify unique hardware, i.e.
hardware of limited availability or hardware not normally a part
of the AOTS hardware environment, that is necessary to test this
element. Unique hardware might include a logic analyzer.
Limited availability hardware might include a mark sense reader
or X/Y input device.

Section IV identifies debug information, should that be
appropriate. Does the element have special debugging code? If
so, how is that feature activated?

Section V describes the specific functional testing to be
performed by the integration test. Identify the elements that
are being integrated and tested by this procedure. Identify the
functions of the unit that are tested by this procedure.
Identify execution paths in the unit that are not tested by this
procedure. This may include fatal error conditions, nonexistant
production data base files, permanent i/o errors, etc. Elaborate
on the actual sequence for the test procedure: what inputs are
necessary, what outputs are expected from that input, and what
function does this input/output sequence check out (this is
indicated with an ordinal cross reference to the above function
list). If specific input from a file is necessary for the test,
indicate what this data is. Similarly, record what the condition
of particular files are as a result of this test. List what
error handling is to be verified in this unit. If the test uses

AOTS.STP 11 Vl.O/Feb.87

data produced by another test procedure or produces data to be
used by another test procedure, then this information should be
recorded under "data compatibility". The heading "other testing"
is to be used to describe testing that you feel should be performed
but does not fall into one of the other classes. When writing
the test procedure, be familiar with the contents of the Test
Report and its Testing Check List, described in the following
paragraph, so that minimum and maximum data ranges, as well as
typical values and similar constraints can be tested.

Section V of this test plan is much like Section V of the
Unit Test Plan. However, the intent of the Specific Testing
section is different between the two plans. In the Unit Test
Plan the scope of the Specific Testing section deals with all
instructions within the unit. In the Integration and Test Plan,
the Specific Testing section is concerned with major paths
through elements and all of the calling sequences of subelements
being integrated.

3.2.6 Integration and Test Report Model. Attachment B is a
model test report. As with the test procedure model, the same
model for reports is used for unit testing and integration
testing, as much of required information is the same. As
described in the unit test report description, this model is to
be used as a guide to report on the execution of integration
tests and should be filled out by the individual performing the
test during the process of, or immediately after, an integration
test. The Test Report should be used as an aid in all
integration and testing, with the completed test reports placed
in the UDF. The following paragraphs describe the elements of
the report.

Section I identifies the integration test being performed,
the person that performed the test, and the date of the test. The
same report form is used to document results for a unit level
test and for an integration level test. Therefore mark the test
level as appropriate. Fill in the environment that the test was
executed in. The time duration of the test can be used for
future planning purposes in integration testing and should be
entered as hours or minutes.

Section II is the reason the test was performed. Is the
test being performed on a newly developed element, is an element
or subelement being enhanced, or is the element being tested
because other elements that it references were changed?
Integration and test reports are necessary not only for newly
integrated elements but also for maturing elements.

Section III is an indication of the test results. Was the
test outcome expected or unexpected? If the outcome was not as
expected, then a description of the problem or the action to be
performed should be furnished, either in this section or in the
following checklist. This area can also be used for notes or

AOTS.STP 12 Vl.O/Feb.87

reminders if the test results were satisfactory.
Section IV is a worksheet to be used in conjunction with the

test sequence section of the test procedure. It is to be used to
note problems or to act as a placeholder while executing the test
sequence.

Section V is a checklist for integration and testing. It is
to be used as a guide, as well as a reminder of what to test and
what to look for while testing. The headings in the checklist
represent the major software performance and requirement
classifications to be checked in unit testing. Beneath each
heading is a list of items to exercise or check. As items are
tested, they are marked off or notes made for problem reminders.

3.3 Resources Required for Informal Testing.

3.3.1 Facilities. The MDAC facilities at Building 428
Bergstrom AFB Austin, Texas, will be the location at which
informal testing will be performed. The AFHRL facilities at
Building 578 Brooks AFB San Antonio, Texas, will be the location
where the host computer for AOTS resides. No classified
information will be processed in conjunction with the AOTS Phase
II informal tests.

3.3.2 Personnel. Personnel required for informal testing are
members of the MDAC AOTS Software Development Organization. An
in-depth knowledge of the requirements and design of the unit or
CPC whose test is being planned or performed is mandatory for the
personnel. Access to Bergstrom AFB is necessary for these
personnel, however, security clearances are not necessary.

3.3.3 Hardware. Hardware to be used for informal testing is
as follows:

A. VAX 8600 located at Building 578, Brooks AFB;
B. Zenith Z248 Personal Computers located at Building 428,

Bergstrom AFB;
C. Printers, of the following types, located in Building

428, Bergstrom AFB:
1. Laser printers
2. Color printers
3. Dot matrix printers;

D. Digitizing tablets, of the following types, located at
Building 428, Bergstrom AFB;

1. llxll digitizers
2. 20x20 digitizers;

E. Optical Mark Readers located at MDAC, Building 428,
Bergstrom AFB;

F. Communication lines and equipment to link the above
hardware.

AOTS.STP 13 Vl.0/Feb.87

3.3.4 Interfacing/Support Software. Software required for
informal testing is as follows:

A. VAX/VMS operating system, including the utilities:
1. Command Language
2. EDT
3. Linker
4. Debug
5. Run-time Library

B. DEC Ada Compiler
C. VAX-li FORTRAN Compiler
D. VAX-lI MACRO Assembler
E. DEC Code Management System
F. MS-DOS, including the utilities

1. Command Language
2. Editor
3. Debug

G. Alsys Ada Compiler
H. Microsoft Macro Assembler

3.3.5 Source. The above resources are provided by AFHRL and
MDAC in support of the AOTS contract.

3.3.6 Test Configuration. The test configuration is
graphically portrayed in Figure 2. It consists of the hardware
listed in paragraph 3.3.3, located at the facilities specified in
paragraph 3.3.1. Note that the peripheral equipment layout in
Building 428 at Bergstrom AFB shows all the different types of
devices to be used in Phase III AOTS. A particular unit or
integration test will use a subset of this equipment. However,
the unit and integration tests, considered as a group, will use
all of the devices.

AOTS.STP 14 V1.0/Feb.87

Z248 PC HSIT PAD

MULTIPLEXER OMR

Z248 PC GRAPHICS

___ ___ ___ __ ____PRINPTIN ERR
DOT MATRIX

PRINTER

PPRINTER LASER
PRINTER

Z248 PC

MDAC
Bldg 428
Bergstrom AFB

AFHRL
Bldg 578
Brooks AFB

INFOTRON
MULTIPLEXER

I
VAX 8600

Figure 2. HARDWARE CONFIGURATION FOR INFORMAL TESTING

15 ol S220

4. PLANS FOR FORMAL TESTING. The formal phase of testing
consists of system level testing and acceptance level testing.
The objective is verification that software meets performance and
interface requirements and demonstration that the software meets
the acceptance criteria. Formal testing is planned by the
software development group but is performed by a group
independent of the software developers. The expected product is
a demonstratable and deliverable program.

Formal testing will be conducted in accordance with the
phased software development approach for AOTS Phase II. A formal
test procedure, at the system test level, will be prepared during
the development period for that program. This test procedure
will be performed and results recorded before the program is
released for Air Force use. Thus, before the data development
programs are released to the IST, they will go through the system
testing cycle.

Formal test procedures, at the acceptance test level, will
be performed and results recorded, in order for the Air Force to
accept AOTS Phase II software.

Both system and acceptance test procedures can Le used to
satisfy test objectives in the AOTS Master Test Plan that require
automated support.

4.1 System Test Planning. The intent of System Testing is to
formally verify software performance and interface requirements.
System level testing is performed on programs that have completed
integration level testing.

4.1.1 System Test Requirements. System Testing consists of
tests and analyses performed to confirm that the software
satisfies all the requirements set forth 4n the AOTS CPCI
Development Specifications. It verifies that the "as built"
software conforms to these specifications. Formal test plans and
procedures are written for System Testing. Analysis is petformed
for those requirements that are too expensive, in terms of time
or resources, to verify by testing.

In order for a program to be ready for system testing, it
must have successfully completed integration level testing and be
placed under configuration control. The system tests are
performed according to test procedures. Test results are
documented, including any discrepancies found.

4.1.2 System Test Responsibilities. The system test
procedures are prepared by the MDAC AOTS software development
organization, in particular by the programmer(s) responsible for
-individual CPCs. This preparation is done during the software
development cycle for a particular program. The test procedure
should define in detail the actual activities required to perform
the test. It should include a description of what should be

AOTS.STP 16 Vl.0/Feb.87

accomplished by the test, the inputs that are required, the
outputs that are expected, and how the test is to be conducted.
The programmer responsible for a CPC will ask that both the
program and test procedure be placed under configuration
management when the program has completed integration testing,
thereby declaring the program is ready for system testing.

Conduct of the system tests will be carried out by the MDAC
AOTS Instructional Technology Branch personnel. These
individuals are different from the people that comprise the
software development gr,,p, but they are very familiar with
system and program requirements. The people who conduct a system
test will also be responsible for recording the test results.

Monitoring of system tests will be performed by the MDAC
AOTS Program Manager or designee; This person's responsibility
will be to spot check that the system tests are being conducted
according to procedures and that results are recorded.

The Air Force AOTS Program Manager, or representative, may
witness system tests.

Results of the system tests are recorded in test reports. If
the tests uncovered deficiencies, these are also recorded in the
test reports. All deficiencies found in system testing are
examined by the Software Technical Review Board. This board is
comprised of the software manager and each CPCI team leader. The
board decides the extent of each deficiency and schedules the
problem to be fixed or directs the deficiency and its
ramifications to the Configuration Control Board.

4.1.3 System Test Schedule. The system test schedule is
specified in the AOTS Software Development Plan.

4.1.4 System Test Procedure Model. Attachment C provides a
model formal test procedure. The model is to be used as a guide
for the individual creating specific formal test procedures for
AOTS software. Note that the model is very similar to the
informal testing model discussed under unit level testing and
integration level testing. Also note that this formal test
procedure model is valid for both System Test Procedures and
Acceptance Test Procedures. The following paragraphs describe
the elements of the procedure and include instructions to be used
by the author in making up the procedure.

Section I identifies the type of formal test procedure, full
identification of the program to be tested, and the author of the
test procedu-e. As the plan is revised, the revision author and
date should be filled in.

Section II is scheduling information for the performance of
the formal test. Enter a projection of the date when the test
will start and how long will it take. Also enter the time
necessary to develop the plan. This entry, as well as the
projected test performance date and duration are for planning and

AOTS.STP 17 Vl.0/Feb.87

scheduling purposes.
Section III specifies the resources required for conducting

the formal test. The software resource category identifies the
program executable to be tested and other programs that are
necessary for the test. Identify the data base files required to
test this program. Indicate what the state of these files should
be, e.g. whether these files are required to contain a previou,!y
determined set of data, whether they should be empty, etc. Some
test'procedures may require a-known data base to predict known
test results. This resource category should reflect that.
Identify what other test procedures need to be run prior to this
procedure. This is important when test procedures need to be run
in a certain order. For example, it may be necessary to run the
Tenative MTL Test Procedure prior to running the MTL Editor Test
Procedure. Identify the hardware configuration for the test by
listing the required hardware. If the tester needs special
qualifications to run the test, enter this data under the
personnel requirements category. An example of this might be
that the tester should be familiar with one of the AOTS supported
Air Force Specialities. When special resources-are required,
such as a video disk or a drawing, enter this information under
the "other" category.

Section IV describes the test. A high level overview of the
test should be entered to explain the test. The functions
provided by the program that the test procedure is to check
should be listed. If there are program functions not tested by
the procedure, then these should be listed together with the
identification of the test procedure in which they are tested.

Section V lists the actions necessary to perform the test.
The test sequence listed here details the input expected from the
user, what output can be expected, and a cross reference as to
what program function that this action applies to. The listed
test sequence should be as exact as possible, in order to produce
test consistency.

Attachment F is an example of an AOTS Formal Test Procedure
to perform system testing on the task information field editing
functions in the MTL Editor. This is to serve as an example only
and is not intended to be complete.

4.1.5 System Test Report Model. Attachment D is a model AOTS
Formal Test Report. It is to be used as a guide to report on the
execution of formal system tests and should be filled out by the
individual performing the test during the process of, or
immediately after, a system test.

Section I identifies the program tested and the person that
did the test. The same report form is used to document results
for a system level test and for an acceptance level test.
Therefore mark the test level as appropriate. Fill in the test
environment, as well as the date. The time duration of the test

AOTS.STP 18 Vl.O/Feb.87

can be used for future planning purposes in system testing and
should be entered as hours or minutes. If there is a test
witness then the identity of that individual should be recorded.

Section II is the reason the test was performed. Is the
test being performed on a newly developed program, for a program
that has been enhanced, or as part of a release of other
enhancements?

Section III is an indication of the test results. Was the
outcome expected or unexpected? If the outcome was not as
expected, then a description of the problem or the action to be
performed should be furnished, either in this section or in the
following worksheet. This area can also be used for notes or
reminders if the test was successful.

Section IV is a worksheet for system testing. It is to be
used to keep notes of test progress, as well as to keep track of
possible discrepancies or questions.

4.2 Acceptance Test Planning. The intent of acceptance
testing is to demonstrate that the software satisfies the set of
predetermined acceptance criteria.

4.2.1 Acceptance Test Requirements. Acceptance Testing
consists of performing test procedures designed to confirm that
the software satisfies all the requirements set forth in the
AOTS CPCI Development Specifications. Acceptance testing must
show that the software performs in the operational environment,
as it did in test environment. This includes using actual
external interfaces.

Generally acceptance testing is performed when a system is
delivered. In the case of AOTS, acceptance testing will be
performed during the latter part of Phase II. Test results are
documented, including any discrepancies found. Some
discrepancies are permissible. The Air Force and MDAC AOTS
management must agree jointly upon the number and severity of
permissible discrepancies.

4.2.2 Acceptance Test Responsibilities. The acceptance test
procedures are prepared by the MDAC AOTS software development
organization, in particular by the programmer(s) responsible for
individual CPCs. This preparation is done after system testing
has been performed on the CPC. The test procedure should define
in detail the actual activities required to perform the test. It
should include a description of what should be accomplished by
the test, the inputs that are required, the outputs that are
expected, and how the test is to be conducted. The acceptance
test procedure is placed under configuration control after it is
written and approved.

Conduct of' the acceptance tests will be carried out by the
MDAC AOTS Instructional Technology Branch personnel. These

AOTS.STP 19 Vl.O/Feb.87

individuals may be the same people that performed the system
tests. They should be familiar with system and program
requirements. The people who conduct an acceptance test will
also be responsible for recording the test results.

Monitoring of acceptance tests will be performed by the MDAC
AOTS Program Manager or designee. This person's responsiblity
will be to verify the acceptance tests are being conducted
according to procedures and that results are recorded.

The Air Force AOTS Program Manager, or representative, will
witness acceptance tests.

Results of the acceptance tests are recorded in test
reports. If the tests uncover deficiencies, these are also
recorded in the test reports. As in system testing, all
deficiencies found in acceptance testing are examined by the
Software Technical Review Board. The board decides the extent of
each deficiency and schedules the problem to be fixed or directs
the deficiency and its ramifications to the Configuration Control
Board.

Execution of an acceptance test procedure with expected and
agreed upon results, as well as the generation of the
corresponding test report, should result in acceptance of the
program by the Air Force AOTS Program Manager.

4.2.3 Acceptance Test Schedule. The acceptance test schedule
is specified in the AOTS Software Development Plan.

4.2.4 Acceptance Test Procedure Model. Attachment C provides a
model formal test procedure. The model is discussed in paragraph
4.1.4. Sections I, II, III, and IV of the test procedures should
be filled out accordingly.

Section V of the acceptance test procedure has the same
format as the system test procedure. This section, the test
sequence, should list the actions necessary to perform the test.
The test sequence includes the input expected from the user, what
output can be expected, and a cross reference as to what program
function that the actions apply to. However, the inputs and
outputs listed in the acceptance test procedure are more
descriptive than in the system test procedure. The reason for
this is that since the acceptance test procedures can be used for
demonstration purposes, the audience for the test procedure might
not be familiar with the program being demonstrated.

Attachment G is an example of an AOTS Formal Test Procedure
to perform acceptance testing on the MTL Editor. This is to
serve as an example only and is not intended to be complete.

4.2.5 Acceptance Test Report Model. Attachment D is a model
AOTS Formal Test Report. It is to be used as a guide to report
on the execution of formal acceptance tests and should be filled
out by the individual performing the test during the process of,

AOTS.STP 20 Vl.0/Feb.87

or immediately after, an acceptance test. The sections of the
model are discussed further in paragraph 4.1.5.

4.3 Formal Test Classes. The test classes for formal testing
include functional requirement testing, interface testing, user
input/output testing, file input/output testing, error condition
testing, timing constraints, and capacity testing. The first six
of these classes are verified by each system and acceptance test
procedure for which the class is appropriate. AOTS capacity
testing is verified by its own test procedure.

4.4 Formal Tests. Each AOTS CPCI will have a series of formal
tests, both at the system and acceptance test level, designed to
verify each CPC and interface required by the CPCI. The tests
will be structured according to the models described in
paragraphs 4.1.4 and 4.2.4. The paragraphs below identify these
tests for the initial design and development effort. Further
tests will be identified during the secondary design effort with
an update to this document prior to the Critical Design Review
for the total software effort.

4.4.1 Management CPCI Test Procedures. The Management CPCI
Test Procedures will consist of the tests listed in Table 1.
With each entry is a paragraph reference to the Management CPCI
Development Specification. This reference specifies the
functions to be performed and the requirements to be satisfied by
the program and therefore to be tested by the test procedure.
The actual test procedure will describe the test, the functions
the procedure is to check, and the inputs and expected outputs to
exercise the functions. Other entries in the table specify the
levels of testing to be performed for each program and the test
methods involved to check each program.

AOTS.STP 21 Vi. 0/Feb.87

Table 1. Management CPCI Test Procedures

Test Test 70S647411 Test Test
Procedure Name Ref 1 Level(2) Method(3)
1 Tenative MTL 3.2.1.1.1 U,I,S,Ac T,D
2 Final MTL 3.2.1.1.2 U,I,S,Ac T,D
3 MTL Editor 3.2.1.1.3 UI,S,Ac T,D
4 TaskPerformance and 3.2.1.2.1 U,I,SAc T,D

Proficiency Editor -
5 Generic PositionTraining_ 3.2.1.4.1 U,IS,Ac T,D

RequirementsEditor
6 Operational.Position_ 3.2.1.4.2 U,IS,Ac T,D

Training-RequirementsEditor
7 OtherTraining_Requirements_ 3.2.1.5 U,I,S,Ac T,D

Editor
8 IMEdit 3.2.3.1.1 UI,S,Ac T,D
9 IMQueue 3.2.3.3 U,I,S,Ac T,D

10 MapEdit 3.2.3.3 UI,S,Ac T,D
ii Capacity Test 3.1.1 S,Ac T,D
12-n (4)

Notes:
1. 70S647411 is the AOTS Management CPCI Development

Specification. Items in this column are references to
paragraphs in this specification.

2. Test Level Codes: U-Unit, I=Integration, S-System,
Ac=Acceptance

3. Test Method Codes: A-Analysis, I=Inspection, D=Demonstration,
T--Test, R=Review

4. The remainder of this table will be developed in accordance
with the AOTS phased software development concept.

AOTS.STP 22 V1.0/Feb.87

4.4.2 Evaluation CPCI Test Procedures. The Evaluation CPCI
Test Procedures will consist of the tests listed in Table 2.
With each entry is a paragraph reference to the Evaluation CPCI
Development Specification. This reference specifies the
functions to be performed and the requirements to be satisfied by
the program and therefore to be tested by the test procedure.
The actual test procedure will describe the test, the functions
the procedure is to check, and the inputs and expected outputs to
exercise the functions. Other entries in the table specify the
levels of testing to be performed for each program and the test
methods involved to check each program.

Table 2. Evaluation CPCI Test Procedures

Test Test 70S647413 Test Test
Procedure Name Ref JJ Level(2) Method(3)
1 Behavioral ObjectivesEditor 3.2.1.1 U,I,S,Ac T,D
2 Test Item Bank Editor 3.2.1.2 U,I,S,Ac T,D
3 Test Editor 3.2.1.3 U,I,S,Ac T,D
4 StrategyManager 3.2.1.7 U,I,S,Ac T,D
5 Graphics Editor 3.2.1.5 U,I,S,Ac T,D
6 Capacity Test 3.1.1 U,I,S,Ac T,D
7-n (4)

Notes:
1. 70S647413 is the AOTS Evaluation CPCI Development

Specification. Items in this column are references to
paragraphs in this specification.

2. Test Level Codes: U=Unit, I=Integration, S=System,
Ac=Acceptance

3. Test Method Codes: A=Analysis, I-Inspection, D=Demonstration,
T--Test, R=Review

4. The remainder of this table will be developed in accordance
with the AOTS phased software development concept.

AOTS.STP 23 Vl.0/Feb.87

4.4.3 System Support CPCI Test Procedures. Many of the
functional requirements of the System Support CPCI are considered
tested as a result of the software development process and
informal and formal testing of the Management and Evaluation
CPCIs. Therefore these requirements need no separate test
procedures. These requirements are listed in Table 3 without a
test procedure number, but instead a reference to note 4. The
System Support Test Procedures will test the remaining
requirements of the System Support CPCI. The test procedures
listed in Table 3 with a test procedure number identify these
procedures. With each entry in Table 3 is a paragraph reference
to the System Support CPCI Development Specification. This
reference specifies the functions to be performed and the
requirements to be satisfied by the program and therefore to be
tested by the test procedure, when a formal test procedure is
applicable. The actual test procedure will describe the test,
the functions the procedure is to check, and the inputs and
expected outputs to exercise the functions. Other entries in the
table specify the levels of testing to be performed for each
program and the test methods involved to check each program.

AOTS.STP 24 Vl.0/Feb.87

Table 3. System Support CPCI Test Procedures

Test Test 70S647414 Test Test
Procedure Name Ref jlJ Level(2)- Method(3)

(4) Operating System 3.2.1.1 D
(4) Ada Compiler 3.2.1.2.1 D
(4). Host Language Compiler 3.2.1.2.2 D
(4) Text Editor 3.2.1.3 0
(4) Virtual Machine Interface 3.2.2 D
(4) Program Control 3.2.3.1 D
(4) Inter-Process Communication 3.2.3.2 D
(4) Data Management. 3.2.3.3 D
(4) Terminal Communication 3.2.3.4 D
(4) Text Handling 3.2.3.5 D
(4) Mathematical Services 3.2.3.6 D
(4) AOTS Utilities TBD D
(4) Operating System (Terminal) 3.2.5.1 D
(4) Ada Compiler (Terminal) 3.2.5.2 D
1 Terminal 3.2.5.3 U,IS,Ac T,D
2 Capacity Test 3.1.1 S,Ac T,D
3-n (5)

Notes:
1. 70S647414 is the AOTS System Support CPCI Development

Specification. Items in this column are references to
paragraphs in this specification.

2. Test Level Codes: U=Unit, I=Integration, S-System,
Ac=Acceptance

3. Test Method Codes: A=Analysis, I=Inspection, D-Demonstration,
T=Test, R=Review

4. These functions are demonstrated to be performing properly as
a result of other system and acceptance test procedures using
the functions.

5. The remainder of this table will be developed in accordance
with the AOTS phased software development concept.

AOTS.STP 25 Vl.O/Feb.87

4.5 Formal Test Levels. The levels of formal testing for AOTS
are system level testing and acceptance level testing. These are
discussed in paragraphs 4.1 and 4.2, respectively.

4.6 Formal Test Summary. Identification of formal tests is
provided in Tables 1, 2, and 3 above. Additionally, these tables
identify test levels, test methods, and program requirements.
Test classes are identified, and checked, as necessary in each
test procedure, with the exception of capacity testing, which has
its own formal test procedure.

4.7 Formal Test Schedule(s). Refer to paragraph 4.1.3 for the
System Test Schedule and paragraph 4.2.3 for the Acceptance Test
Schedule.

4.8 Data Recording, Reduction, Analysis. The specification of
data to be recorded, reduced, or analyzed in order for programs
to be properly verified will be detailed in the system and
acceptance test procedures for those programs. When the results
of the data recording, reduction, or analysis is on hard copy,
then this hard copy will be stored with the test reports, which
are described in paragraphs 4.1.5 and 4.2.5.

A test log shall be kept when performing acceptance test
procedures. All significant events will be reported
chronologically on the test log. A completed test log is stored
with the test report. A model test log is contained in Appendix
E.

4.9 Formal Test Reports. Formal test report models are

described in paragraphs 4.1.5 and 4.2.5.

4.10 Resources Required for Formal Testing.

4.10.1 Facilities. The MDAC facilities at Building 428 and
the AFHRL IST facilities at Building 1808, both at Bergstrom AFB
Austin, Texas, will be the locations at which formal testing will
be performed. The AFHRL facilities at Building 587 Brooks AFB
San Antonio, Texas, will be the location where the host computer
for AOTS resides. No classified information will be processed in
conjunction with the AOTS Phase II formal tests.

4.10.2 Personnel. Personnel required for the preparation of
formal test procedures are members of the MDAC AOTS Software
Development Organization. An in-depth knowledge of the
requirements and design of the CPC whose test is being planned is
mandatory for the personnel.

Personnel required for conducting formal tests are members
of the MDAC AOTS Instructional Technology Branch. The personnel
represent the Management Subsystem, Evaluation Subsystem, and IST

AOTS. STP 26 Vl.O/Feb.87

Support group and must have the following qualifications:
A. An in-depth knowledge of one or all subsystems;
B. Familiarity with the user interface to automated

functions for a subsystem;
C. Understanding of data contents requirements for the

automated functions..
Access to Bergstrom AFB is necessary for both groups of

personnel, however, security clearances are not necessary.

4.10.3 Hardware. Hardware to be used for formal testing is as
follows:

A. VAX 8600 located at Building 578, Brooks AFB;
B. Zenith Z248 Personal Computers located at Buildings 428

and 1808, Bergstrom AFB;
C. Printers, of the following types, located in Buildings

428 and 1808, Bergstrom AFB:
1. Laser printers
2. Color printers
3. Dot matrix printers;

D. Digitizing tablets, of the following types, located at
Buildings 428 and 1808, Bergstrom AFB;

1. llxll digitizers
2. 20x20 digitizers;

E. Optical Mark Readers located in Buildings 428 and 1808,
Bergstrom AFB;

F. Communication lines and equipment to link the above
hardware.

4.10.4 Interfacing/Support Software. Software required for
formal testing is as follows:

A. VAX/VMS operating system, including the utilities:
1. Command Language
2. EDT
3. Linker
4. Debug
5. Run-time Library

B. DEC Ada Compiler
C. VAX-11 FORTRAN Compiler
D. VAX-11 MACRO Assembler
E. DEC Code Management System
F. MS-DOS, including the utilities

1. Command Language
2. Editor
3. Debug

G. Alsys Ada Compiler
H. Microsoft Macro Assembler

4.10.5 Source. The above resources are provided by AFHRL and
MDAC in support of the AOTS contract.

AOTS.STP 27 Vl.0/Feb.87

5. TEST PLANNING ASSUMPTIONS AND CONSTRAINTS. To help assure
valid system level and acceptance level testing, it is assumed
that actual AOTS data, e.g. Master Task List data, Behavioral
Objectives, Test Items, etc., will be available to exercise the
code. Until such time that this actual data is available,
simulated versions of the data must be used for testing purposes.

6. NOTES. Not Applicable.

AOTS.STP 28 Vl.0/Feb.87

Test Procedure

I. Identification

Author:
Date Prepared:
Unit ID

CPC No:
CM Id:
Package Name:

Test Type: Unit or Integration
Revision History:

II. Scheduled Development Test Performance Dates

Projected Start: complete:

Development Hours: Estimate to perform:

III. Resources
Test Source:
Data Base Files (N = New or unique, E = Existing)

Unit Test : Other Units (S = Stub, A = Actual)

or
Integration Test : Other personnel and software

Hardware:
Normal, or tested, AOTS hardware environment

or
Unique, or testing, hardware environment

Host: Terminal: Printer:

Mark Reader: X/Y Device: Other:

IV. Debug

Special debug code(Y/N): - How activated:

AOTS.TP A-1 V1.0/Feb.87

V. Specific Testing

Test Element(s):
1. List of
2. test
3. elements

Function(s) to test:
1. List of
2. functions
3. to test

Execution paths not tested:
1. List of
2. paths
3. not tested

Test Sequence:

Functions Inputs Outputs

function # expected input expected output

File Input:

File Output:

Error conditions:

Data Compatibility:

Other testing:

AOTS.TP A-2 Vl.O/Feb.87

Test Report

I. Identification

Test Type: Unit or Integration

Unit ID
CPC No:
CM Id:
Package Name:

Environment:

Tester:

Date:

Time duration:

II. Reason for test (check one)

- Initial Development __ Revision/Enhancement Regression

III. Results (check one)

Satisfactory results Action required

Action, problem description, or notes:

AOTS .TR B-1 V.o/Feb.87

Date:

Page:.

IV. Test Sequence Worksheet

Function Notes

AOTS.TR B-2 V1.O/Feb.87

V. Testing Checklist

Functions
Performs required functions

Logic _ Computations Input/Output
-Relationship to other units

Arguments _ Declarations
Action, problem, notes:

Execution paths
Unit: Instructions Decision branches Loops
Integration: __ Major paths - Calling sequences
Action, problem, notes:

User input (N/A__, Verify__)
__ Consistency (return key, etc)

Field screen positions Start Stop
__ Data validity - valid and invalid ranges

Minimum (=, <, >) Maximum (=, >, <) - Typical
Exceptional (null input, etc.) _ Type __ Format

Action keys
Redisplay Help - Exit Abort

Response time
Action, problem, notes:

File input (N/A _, Verify-)
Data validity - valid and invalid ranges

Minimum (=, <, >) _ Maximum (=, >, <) Typical
Exceptional (null input, etc.) - Type - Format

I/O error conditions
Action, problem, notes:

Device input (N/A_, Verify-)
Data validity - valid and invalid ranges

Minimum (=, <, >) _ Maximum (=, >, <) - Typical
- Exceptional (null input, etc.) - Type - Format
I/0 error conditions

Action, problem, notes:

AOTS.TR B-3 Vl.0/Feb.87

Screen or report output (N/A_, Verify_)
(Include all menus, prompts, help sequences)
SDisplays consistent
With other displays in program __programs

__ Displays within boundary
__ Display proportioned ok Too much data - Too little data

Constants/Literals display ok _ Spelling Understanding
--Variables display ok _ Minimum _ Maximum _ Typical
Video enhancements (reverse video, underline, color)

Useful Readable in various light conditions
__ D-splay speed -- Too slow Too fast

Erase Whole screen _P-artial

Acrtion, problem, notes:

File output (N/A _, Verify-)
__ Data validi-ty _ Type __ Format __ I/O error conditions
Action, problem, notes: _

Device output (N/A _, Verify__)
_ Data validity _ Type _ Format __ I/O error conditions
Action, problem, notes:

Error conditions (N/A_, Verify_)
Unit does not abort External interfaces not corrupted
Data base not corrupted

Action, problem, notes:

Data Compatibility
Range __ Type Format Method of transfer

Action, problem, notes:

Other testing (N/A__, Verify__)

Action, problem, notes:

AOTS.TR B-4 V1.0/Feb.87

AOTS Formal Test Procedure

I. Identification
Test Type: System or Acceptance
CPCI:
Program:
Author:
Date Prepared:
Revision History:

II. Scheduled Test Performance Dates
Projected Start: Duration:
Development Hours:

III. Resources
Software
Executable Program:
Other Programs:

Data Base Files:

Other Test Procedures:
Hardware Configuration:

Host: Terminal: Printer:
Mark Reader: X/Y Device: Other:

Personnel/Qualifications:
Other:

IV. Description

Function(s) to test:
1. list
2. of
3. functions
4. to
5. test

Function(s) not tested:
1. list
2. functions
3. tested elsewhere

V. Test Sequence

Step Func Inputs Outputs
seq# fn# expected input expected output

(any special acceptance criteria)

AOTS.FTP C-I Vi.0/Feb.87

AOTS Formal Test Report

I. Identification

Test Type: System or Acceptance

CPCI:

Program: Revision:

Environment:

Tester:

Date:

Time duration:

Witness:

II. Reason for test (check one)

__ Initial Development __ Revision/Enhancement __ Regression

III. Results (check one)

Satisfactory results Action required

Action, problem description, or notes:

AOTS.FTR D-1 Vl.O/Feb.87

Date:
Page:

IV. Test Procedure Worksheet

Step Note

AOTS.FTR D-2 V1.O/Feb.87

AOTS Acceptance Test Log

I.* IdentificationPae
o

CPCI:__ _ _ _ _ _ _ _ _ _ _

Program: _____________

Person Completing Log: ____________

Date: __ _ _ _ _ __ _ _ _ _ _

II. Event Log

ITime IEvent

AOSI T E-1_ IIOFb8

AOTS Formal Test Procedure

I. Identification
Test Type: System
CPCI: Management CPCI
Program: MTL Editor
Author: J. Snordley
Date Prepared: 13 Jan 87
Revision History: NA

II. Scheduled Test Performance Dates
Projected Start: 15 Feb 87 Duration: 4 hrs
Development Hours: 8 hrs

III. Resources
Software
Executable Program: MTLEdit
Other Programs: NA

Data Base Files: MTLOO01 MTLOO01 MTLOO03 MTLOO04
TPPOO01 TPPOO02 TPPOO03 TPPOO04

Other Test Procedures:TenativeMTL
Hardware Configuration:

Host: VAX 8600 Terminal: Z248
Personnel/Qualifications: Familiar with AOTS concepts,
MTL data, and at least 1 supported AFS

Other: OMC task list for an AFS

IV. Description. This test procedure will test all task
information field editing functions of the MTL Editor.

Function(s) to test:
Create and change the following fields in a task:
1. Task statements
2. Task identification numbers
3. Source identifications
4. Speciality Training Standard identifications
5. User identification codes
6. Training material identifications and locations
7. Task certification before performance codes and frequencies
8. Task recertification requirement codes and frequencies
9. Common subtask requirement codes

10. Position task requirement codes
11. Task factors

A. Percent members performing
B. Difficulty
C. Training emphasis

12. Weapon system
13. Support equipment required

AOTS.FTP F-i V1.0/Feb.87

14. Priority codes
A. Training
B. Evaluation
C. Development

15. Mandatory task training and performance requirement codes
Function(s) not tested:

Editting of the following fields is tested in Task Decomposition
Test Procedure:
1. Subtask identification codes with performance sequence
2. Task steps/performance sequence

F

AOTS.FTP F-2 VI. 0/Feb.87

V. Test Sequence

Step Func Inputs Outputs

1. type aots AOTS logo and prompt
for ID

2. enter ID Prompt for password

3. enter password If qualified user,
logon menu

4. execute MTL Editor MTL Editor Menu

5. enter create prompt for AOTS task id

6. enter task id if new task, task information menu
if existing task, error message

proceed through task information menu

7. 1 enter task statement statement is displayed

8. 2 enter task id number id number is displayed

modify the task information fields

101. 1 enter option to task statement is displayed
modify statement

102. 1 change task updated task statement is
statement - try displayed
various positioning
and editing sequences

103. 1 enter option to task statement is displayed
redisplay task as editted above
statement

AOTS.FTP F-3 V1.0/Feb.87

AOTS Formal Test Procedure

I. Identification
Test Type: Acceptance
CPCI: Management CPCI
Program: MTL Editor
Author: J. Snordley
Date Prepared: 15 Mar 88
Revision History: NA

II. Scheduled Test Performance Dates
Projected Start: 15 July 88 Duration: 2 hrs
Development Hours: 8 hrs

III. Resources
Software

Executable Program: MTLEdit
Other Programs: NA

Data Base Files: MTLOO01 MTLOO01 MTLOO03 MTLOO04
TPPOO01 TPPOO02 TPPOO03 TPPOO04

Other Test Procedures:TenativeMTL
Hardware Configuration:

Host: VAX 8600 Terminal: Z248
Personnel/Qualifications: Familiar with AOTS concepts,
MTL data, and at least 1 supported AFS

Other: OMC task list for an AFS

IV. Description. This test procedure will demonstrate all
functions of the MTL Editor that were specified in the Management
CPCI Development Specification.

Function(s) to test:
1. Search for a task entry
2. Display, review, and print task and task information
3. Decompose task into subtasks and subtasks into steps
4. Group task information by catagory
5. Prioritize tasks
6. Perform task and task information editting functions.
7. Cross reference Task Performance and Proficiency Data to task
8. Update MTL

Function(s) not tested: NA

AOTS.FTP G-1 Vl.0/Feb.87

V. Test Sequence

Step Func Inputs Outputs

1. type aots This is the common entry
point for all AOTS users.
The AOTS logo is displayed
along with a prompt for user
identification.

2. enter ID The user must establish valididentification with the system.
After the user id is entered,
a prompt for password is
displayed.

3. enter password The password will not echo
on the screen. If the user
is valid, a logon menu
listing the programs which
the user is qualified for is
displayed.

4. enter the ordinal This executes the MTL Editor.
associated with the The main menu of the MTL
MTL Editor Editor is displayed. Review

this main memu.

5. 1 enter MTL search A prompt is displayed that is
function by pressing requesting the search
the S key criteria.

6. 1 enter search criteria A search is performed on the
(search criteria will MTL. If a task satisfies the
be definitized here) criteria, high level data from

the task is displayed.
Otherwise a message is
displayed indicating no task
can be found which meets the
input criteria. (This search
must be performed within a
maximum of 60 seconds.)

7. 2 enter display option Task information associated
by pressing D key with the task found on the

search above is displayed.

AOTS.FTP G-2 V1.0/Feb.87

